Similarly, this same point P is the centre of symmetry of parallelogram BCFG, and so on around the octagon. Thus, P is the centre of symmetry of the octagon.

8. Let $M = \{x^2 + x \mid x \text{ is a positive integer}\}$. For each integer $k \geq 2$ prove that there exist $a_1, a_2, \ldots, a_k, b_k$ in M such that $a_1 + a_2 + \cdots + a_k = b_k$. Solution by Geoffrey A. Kandall, Hamden, CT, USA.

The proof is by induction on k.

Note that $x^2 + x = x(x+1)$, so each element of M is even.

Since 12+30=42 and $12=3\cdot 4,\,30=5\cdot 6,\,42=6\cdot 7\in M,$ the desired result holds for k=2.

Now the inductive step. Suppose that for some $k \geq 2$ we have $a_1 + a_2 + \cdots + a_k = b_k$, where $a_1, a_2, \ldots, a_k, b_k \in M$. Since b_k is even, we have $b_k = 2c$ for some positive integer c. Moreover, $b_k \geq a_1 + a_2 \geq 4$, so $c \geq 2$. Let $a_{k+1} = (c-1)c \in M$. Then

$$a_1 + a_2 + \cdots + a_k + a_{k+1} = 2c + (c-1)c = c(c+1) \in M$$

and the induction is complete.

Next we turn to solutions from our readers to problems of the Republic of Moldova Mathematical Olympiad Second and Third Team Selection Tests given at [2009: 378–379].

3. Let a, b, c be the side lengths of a triangle and let s be the semiperimeter. Prove that

$$a\sqrt{\frac{(s-b)(s-c)}{bc}} + b\sqrt{\frac{(s-c)(s-a)}{ac}} + c\sqrt{\frac{(s-a)(s-b)}{ab}} \ge s.$$

Solution by Arkady Alt, San Jose, CA, USA.

Let x:=s-a, y:=s-b, z:=s-c then x,y,z>0, a=y+z, b=z+x, c=x+y, s=x+y+z and the original inequality becomes

$$\sum_{cyc} (y+z) \sqrt{\frac{yz}{(x+y)(z+x)}} \ge x+y+z,$$

where x, y, z > 0.

Since

$$\sum_{cyc} \left(y+z
ight) \sqrt{rac{yz}{\left(x+y
ight)\left(z+x
ight)}} \ = \ \sum_{cyc} rac{\left(y+z
ight) \sqrt{yz\left(x+y
ight)\left(z+x
ight)}}{\left(x+y
ight)\left(z+x
ight)}$$

and by Cauchy and AM-GM Inequalities

$$\begin{split} (y+z)\sqrt{yz\,(x+y)\,(z+x)} &\geq (y+z)\sqrt{yz\,(x+\sqrt{yz})^2} \\ &= (y+z)\,\sqrt{yz}\,(x+\sqrt{yz}) \\ &= x\,(y+z)\,\sqrt{yz}+(y+z)\,yz \\ &\geq 2x\sqrt{yz}\sqrt{yz}+(x+y)yz \\ &= 2xyz+(y+z)\,yz \\ &= yz\,((x+y)+(x+z)) \end{split}$$

then

$$\sum_{cyc} \frac{(y+z)\sqrt{yz(x+y)(z+x)}}{(x+y)(z+x)} \ge \sum_{cyc} \frac{yz((x+y)+(x+z))}{(x+y)(z+x)}
= \sum_{cyc} \left(\frac{yz}{z+x} + \frac{yz}{x+y}\right)
= \sum_{cyc} \frac{yz}{z+x} + \sum_{cyc} \frac{yz}{x+y}
= \sum_{cyc} \frac{zx}{x+y} + \sum_{cyc} \frac{yz}{x+y} = \sum_{cyc} \frac{zx+yz}{x+y}
= \sum_{cyc} \frac{z(x+y)}{x+y} = x+y+z.$$

5. The point P is in the interior of triangle ABC. The rays AP, BP, and CP cut the circumcircle of the triangle at the points A_1 , B_1 , and C_1 , respectively. Prove that the sum of the areas of the triangles A_1BC , B_1AC , and C_1AB does not exceed s(R-r), where s, R, and r are the semiperimeter, the circumradius, and the inradius of triangle ABC, respectively.

Solution by Titu Zvonaru, Cománeşti, Romania.

We will prove the statement of the problem for the points A_1 , B_1 , C_1 such that A_1 belongs to arc BC which does not contain point A, and similarly for B_1 and C_1 .

Let [XYZ] be the area of $\triangle XYZ$. We denote a = BC, b = CA, c = AB. Let M be the midpoint of arc BC which contains the point A_1 (which does not contain the point A). It is easy to see that

$$[A_1BC] \leq [MBC]. \tag{1}$$

We have

$$\angle MBC = \angle MCB = \angle MAC = \frac{A}{2}.$$

